

## Werkstoffdaten PEEK CA30

| Eigenschaften                                      | Prüfmethoden       | Einheiten | Werte                 |
|----------------------------------------------------|--------------------|-----------|-----------------------|
| Farbe                                              | -                  | -         | schwarz               |
| Dichte                                             | ISO 1183-1         | g/cm3     | 1.40                  |
| Wasseraufnahme:                                    |                    | <u> </u>  |                       |
| Nach 24/96 h Lagerung im Wasser von 23°C           | ISO 62             | mg        | 4/9                   |
|                                                    | ISO 62             | %         | 0.05 / 0.11           |
| Bei Sättigung im Normalklima 23°C / 50% RF         | -                  | %         | 0.16                  |
| Bei Sättigung im Wasser 23°C                       | -                  | %         | 0.35                  |
| Thermische Eigenschaften                           |                    |           |                       |
| Schmelztemperatur (DSC, 10° C/min.)                | ISO 11357-1/-3     | °C        | 340                   |
| Glasübergangstemperatur (DSC, 20°C/min.)           | ISO 11357-1/-2     | °C        | -                     |
| Wärmeleitfähigkeit bei 23°C                        | -                  | W/(K.m)   | 0.92                  |
| Thermischer Längenausdehnungskoeffizient:          |                    | , ()      | ****                  |
| Mittlerer Wert zwischen 23 und 100°C               | _                  | m/(m.K)   | 25 x 10 <sup>-6</sup> |
| Mittlerer Wert zwischen 23 und 150°C               | -                  | m/(m.K)   | 25 x 10 <sup>-6</sup> |
| Mittlerer Wert oberhalb 150°C                      |                    | m/(m.K)   | 55 x 10 <sup>-6</sup> |
| Wärmeformbeständigkeitstemperatur:                 |                    |           |                       |
| Methode A: 1.8 MPa                                 | ISO 75-1/-2        | °C        | 260                   |
| Obere Gebrauchstemperaturgrenze in Luft:           |                    |           |                       |
| Kurzzeitig                                         | -                  | °C        | 310                   |
| Dauernd: während min. 20'000 h                     | -                  | °C        | 250                   |
| Untere Gebrauchstemperatur                         | -                  | °C        | -20                   |
| Brennverhalten:                                    |                    |           |                       |
| "Sauerstoff-Index"                                 | ISO 4589-1/-2      | %         | 40                    |
| Nach UL 94 (Dicke 1.5 / 3 mm)                      | -                  | -         | V-0 / V-0             |
| Mechanische Eigenschaften bei 23°C                 |                    |           |                       |
| Zugversuch                                         |                    |           |                       |
| Streckspannung / Bruchspannung                     | ISO 527-1/-2       | MPa       | OSP / 144             |
| Zugfestigkeit                                      | ISO 527-1/-2       | MPa       | 144                   |
| Streckdehnung                                      | ISO 527-1/-2       | %         | OSP                   |
| Bruchdehnung                                       | ISO 527-1/-2       | %         | 3.5                   |
| Zug-Elastizitätsmodul                              | ISO 527-1/-2       | MPa       | 9200                  |
| Druckversuch:                                      |                    |           |                       |
| Druckspannung bei 1 / 2 / 5 % nomineller Stauchung | ISO 604            | MPa       | 69 / 125 / 170        |
| Charpy Schlagzähigkeit                             | ISO 179-1/1eU      | kJ/m²     | 50                    |
| Charpy Kerbschlagzähigkeit                         | ISO 179-1/1eA      | kJ/m²     | 5                     |
| Kugeldrückhärte                                    | ISO 2039-1         | N/mm²     | 310                   |
| Rockwellhärte                                      | ISO 2039-2         | -         | M 102                 |
| Elektrische Eigenschaften bei 23°C                 |                    |           |                       |
| Durchschlagfestigkeit                              | IEC 60243-1        | kV/mm     | -                     |
| Spezifischer Durchgangswiderstand                  | IEC 60093          | Ohm.cm    | < 105                 |
| Spezifischer Oberflächenwiderstand                 | ANSI/ESD STM 11.11 | Ohm/sq.   | < 10 <sup>5</sup>     |
| Dielektrizitätszahl ε <sub>r</sub> : - bei 100 Hz  | IEC 60250          | -         | -                     |
| - bei 1 MHz                                        | IEC 60250          | Ī         |                       |
| Dielektrischer Verlustfaktor δ tan: - bei 100 Hz   | IEC 60250          | _         | _                     |
| - bei 1 MHz                                        | IEC 60250          |           | _                     |
| Vergleichszahl der Kriechwegbildung (CTI)          | IEC 60112          | _         | _                     |
| Vergeichszahl der Kriechwegbildung (CTI)           |                    | 000       |                       |

Diese Daten sind Richtwerte, die nach Herstellungsart der Probekörper und Beanspruchung Veränderungen unterworfen sind.

Diese Angaben beruhen auf eigener Erfahrung und auf Herstellerangaben. Ihre Mitteilung erfolgt jedoch ohne Gewähr, da jeder Anwendungs-fall anders ist, und mit Bezug auf seine speziellen Einfluss-Parameter betrachtet werden muss.

## PEEK CA 30

Dieser PEEK-Typ ist mit einem Anteil von 30% Kohlenstofffasern verstärkt und hat eine noch bessere Steifigkeit und Kriechfestigkeit als PEEK mit Glasfaserverstärkung. Darüber hinaus bringen die Kohlenstofffasern eine 3.5 mal höhere Wärmeleitfähigkeit als beim PEEK. Bei hochbelastet-en

Gleitelementen wird dieser Vorteil genutzt, die Reibungswärme schneller von der Reibfläche abzuführen. Durch den hohen Kohlenstofffaseranteil werden die elektrischen Eigenschaften stark verändert. Das Material wird elektrisch leitfähig.

Note: 1 g/cm $^3$  = 1000 kg/m $^3$ ; 1 Mpa = 1 N/mm $^2$ ; 1 kV/mm = 1 MV/m.

OSP: ohne Streckpunkt